ESI VPS based multiscale modelling of the performance of laser structured composite-metal interfaces

Sebastian Müller, Patrick de Luca, Alain Tramecon
Introduction

• **COMMUNION** European Research Project
 ‣ Development of productive and cost effective manufacturing of 3D metal/CFRTs multi-material components
 • Automatic tape placement of CFRTs with controlled laser-assisted heating
 • High-speed laser texturing and cleaning
 • On-line monitoring and inspection
 • Multi-stage robot solution for joining
 • Quality diagnosis and decision support
 • Computational multi-scale modelling

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 680567.

The dissemination of results herein reflects only the author’s view and the European Commission is not responsible for any use that may be made of the information it contains.
Motivation

“The right material at the right place.”

• Why composite materials?
 ‣ High stiffness, strength and durability
 ‣ High specific energy absorption

• Why metals?
 ‣ Great experience on design and manufacturing
 ‣ Good joinability and load introduction

Efficient lightweight design requires the combination of multiple materials
But how to join them?
Motivation

• Automated Tape Placement (ATP)
 ‣ Systematic local reinforcement with composite tapes
 ‣ Automated process

• Laser Texturing and Cleaning of Surfaces
 ‣ Elimination of undesired substances
 ‣ Creation of controlled structures on the metal surface for the anchorage of the TPCs
 ‣ Improved wettability and mechanical interaction

Laser assisted joining can help to secure the required performance of a hybrid joint

But how to design the process?
Outline

1. Introduction and Motivation
2. Multiscale analysis of metal / composite interfaces
 1. Scale bridging
 2. Model generation
3. Material modelling
 1. Progressive interface damage
 2. Polymeric matrix failure
4. Demonstration
5. Conclusion
Multiscale analysis of metal / composite interfaces

- How to predict the adhesive performance of laser structured metal / composite interfaces numerically?
 - Interface consists of a periodic repetition of unique geometric features
 - Periodicity allows for the extraction of representative parts of the interface
 - High contrast of length scale between the microscopic geometrical interface features and the macroscopic dimension of the hybrid structure
 - Scale bridging based on the HILL averaging principle
 - The macroscopic virtual work density equals the volume average of the total virtual work on the microscale
Multiscale analysis of metal / composite interfaces

- **Model generation**
 - Cumbersome generation of a numerical FE model of the microscopic interface structure
 - Automated model generation process
 1. Idealized CAD models of the local interface structure
 2. Mapping of the geometry on a homogeneous voxel mesh
 3. Extraction of the local material coordinate system
 4. ESI VPS model preparation
Outline

1. Introduction and Motivation
2. Multiscale analysis of metal / composite interfaces
 1. Scale bridging
 2. Model generation
3. Material modelling
 1. Progressive interface damage
 2. Polymeric matrix failure
4. Demonstration
5. Conclusion
Material modelling

- **Progressive interface damage**
 - 3D cohesive damage approach
 - Linear degradation of the interface traction
 \[
 \sigma_{nn} = (1 - D^{CZ}) K_{nn} \delta_{nn} \\
 \sigma_{ns} = (1 - D^{CZ}) K_{ns} \delta_{ns} \\
 \sigma_{nt} = (1 - D^{CZ}) K_{nt} \delta_{nt}
 \]
 - Damage initiation based on quadratic failure criteria
 \[
 \left(\frac{\sigma_{nn}}{X_n} \right)^2 + \left(\frac{\sigma_{ns}}{Y_s} \right)^2 + \left(\frac{\sigma_{nt}}{Y_t} \right)^2 = 1
 \]
 - Damage evolution controlled by effective mixed-mode separation and fracture criterion
 \[
 \delta_m = \sqrt{\langle \delta_{nn} \rangle^2 + \delta^2_{ns} + \delta^2_{nt}} = \sqrt{\langle \delta_{nn} \rangle^2 + \delta^2_{shear}}
 \]
 \[
 \left(\frac{G_I}{G_{IC}} \right) + \left(\frac{G_{II}}{G_{IIC}} \right) + \left(\frac{G_{III}}{G_{IIIC}} \right) = 1
 \]
Material modelling

• Continuum damage model for the polymeric matrix
 ‣ Nonlinear elastic material behavior with isotropic damage
 \[\sigma_{ij} = (1 - D^{CDM}) \hat{\sigma}_{ij} \]
 \[\hat{\sigma}_{ij} = \frac{2G}{1 + \alpha_G \| e_{kl} \|} e_{ij} + \frac{2K}{1 + \alpha_K \| \varepsilon_{mm} \|} \varepsilon_{mm} \delta_{ij} \]
 ‣ Damage initiation defined by Christensen failure criterion
 \[\left(\frac{1}{T} - \frac{1}{C} \right) (\sigma_{11} + \sigma_{22} + \sigma_{33}) + \]
 \[\frac{1}{2TC} \left[(\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 \right] \leq 1 \]
 ‣ Scalar damage driven by equivalent displacement
 \[D^{CDM} = \frac{\delta_v^f (\delta_v^{max} - \delta_v^0)}{\delta_v^{max} (\delta_v^f - \delta_v^0)} \]
 \[\delta_v = I^{elem} \left(k_1 l_1 + \sqrt{(k_1 l_1)^2 + k_2 l_2} \right) \]
Outline

1. Introduction and Motivation

2. Multiscale analysis of metal / composite interfaces
 1. Scale bridging
 2. Model generation

3. Material modelling
 1. Progressive interface damage
 2. Polymeric matrix failure

4. Demonstration

5. Conclusion
Demonstration

- Analysis of idealized interface structures
- Each structure corresponds to a specific laser structuring process setup
- Automated generation of the VPS models for the virtual characterization
Demonstration

- Empirical set of material parameters

- Analysis of different loading conditions
 1. $\alpha = 90^\circ$ Mode I loading
 2. $\alpha = 0^\circ$ Mode II loading
 3. $\alpha = 45^\circ$ Mixed Mode loading

- Extraction of effective Force-Separation curves and local damage patterns

<table>
<thead>
<tr>
<th>Material</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal - AHBSS</td>
<td>E</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>ν</td>
<td>0.284</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>G_I</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>G_T</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td>G_{IC}</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Polymer - PA66	E	1.7
	ν	0.3
	X_a	0.01
	Y_a	0.01
	Y_c	0.01
	G_{IC}	9e-5
	G_{IC}	2e-4

| Interface | G_{IC} | 9e-5 |
| | G_{IC} | 2e-4 |
Demonstration

- Local damage distribution under different loading conditions

Mode I
- Pure adhesive failure

Mixed Mode
- Combined adhesive and cohesive failure

Mode II
Demonstration

- Local damage distribution under different loading conditions

Pure adhesive failure

Combined adhesive and cohesive failure
Demonstration

- Local damage distribution under different loading conditions

Mechanical interlock Combined adhesive and cohesive failure
Demonstration

- Effective Stress-Separation curves

Type 3
Increased stress level due to mechanical interlock

Adhesive failure followed by cohesive failure

Type 2 & 3
Increased shear strength
Outline

1. Introduction and Motivation

2. Multiscale analysis of metal / composite interfaces
 1. Scale bridging
 2. Model generation

3. Material modelling
 1. Progressive interface damage
 2. Polymeric matrix failure

4. Demonstration

5. Conclusion
Conclusion

• Modern lightweight design requires the combination of multiple materials
• Laser structuring of metal / composite interfaces can enhance the mechanical performance of local ATP based reinforcement
• Multiscale modelling can be applied to analyze microscopic material interface geometries
• Efficient simulation based on automated model generation
• Characteristic damage phenomena need to be modeled properly
• Simulation can help to analyze the mechanical performance effects of different laser structuring process parameters